?İ

Steuern / Regeln

Brinkmann Kühlmittelpumpen mit Frequenzumrichter 1,3 – 22 kW

Eine Pumpe mit integriertem Frequenzumrichter bietet die für Ihre Applikation optimale Ergänzung der bestehenden Produktpalette.

Die sonst für die Kreiselpumpe typische Q-H-Kennlinie wird beim Einsatz eines Frequenzumrichters durch ein Kennlinienfeld ersetzt. Dadurch ist man in der Lage, in diesem Kennlinienfeld verschiedene Betriebspunkte anzufahren. Dies bedeutet, dass die Pumpe auf Ihren Einsatzfall optimal abgestimmt werden kann.

Pumpenregelung

Eine Regelung ist ein Vorgang, bei dem physikalische Größen, wie z. B. ein Druck, fortlaufend erfasst und mit vorgeschriebenen Größen verglichen werden. Bei Abweichungen sorgen Regeleinrichtungen (hier ein PI-Regler) dafür, dass es zur gewünschten Angleichung kommt.

Bei Regelungen wird kontrolliert, ob ein gewünschter Zustand erreicht wird. So kann z. B. in einem Prozess ein vorher eingestellter Druck in gewissen Bereichen konstant gehalten werden, unabhängig von der abgenommenen Fördermenge.

Pumpensteuerung

Eine Steuerung ist ein Vorgang, bei dem physikalische Größen, wie z. B. ein Druck oder ein Volumenstrom, durch andere Größen beeinflusst werden.

Bei einer Steuerung spricht man auch von einem offenen Wirkungskreis, da das Ergebnis einer Steuerung nicht überwacht wird. Störgrößen, die im System auftreten, können nicht ausgeglichen werden, da die Ausgangsgröße nicht auf die Eingangsgröße zurückwirkt.

Pumpen mit Frequenzumrichter werden ab Werk immer vorparametriert ausgeliefert.

Überwachung und Rückführung der Ausgangsgröße

z. B. Druck oder Füllstand (0/4 - 20 mA o. 0 - 10 V)

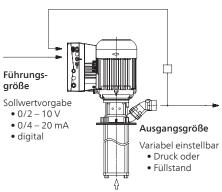


Abb. 2: Schema einer Regelung

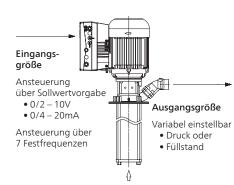


Abb. 4: Schema einer Steuerung

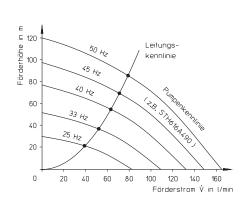


Abb. 1: Kennlinienfeld

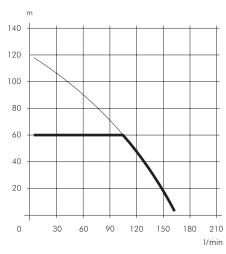


Abb. 3: Druckregelung auf max. 6 bar begrenzt

Steuern / Regeln

?i

1. Pumpensteuerung über Analogsignal

Bei einer Ansteuerung der Kühlmittelpumpe mit einem Frequenzumrichter können mit z. B. unterschiedlichen Werkzeugen nahezu unendlich viele verschiedene Drücke erreicht werden.

Die Auslegung der Pumpe ist in den meisten Fällen auf die 50 Hz-Ausführung beschränkt. Durch Leistungsreserven bei verschiedenen Pumpen ist ein Betrieb mit höheren Frequenzen nach Rücksprache möglich. Der Frequenzumrichter wird dann an der Stromgrenze betrieben. D. h. der Motor wird maximal mit dem eingestellten Motornennstrom betrieben. Benötigt die Pumpe aufgrund des Betriebspunktes mehr Motorleistung, wird die Frequenz solange abgeregelt, bis der max. Motorstrom wieder erreicht wird.

2. Pumpensteuerung über (max. 7) Festfrequenzen

Eine Alternative zur analogen Pumpensteuerung bietet die digitale Ansteuerung des Frequenzumrichters über 3 Digitaleingänge. Dabei können bis zu 7 verschiedene Festfrequenzen angesteuert werden.

Mit der Festfrequenzsteuerung kann man z. B. mit einem bestimmten Werkzeug spezielle Druckstufen realisieren.

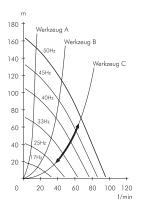


Abb. 5: Analogsignal (stufenlos)

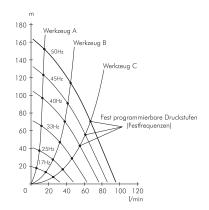
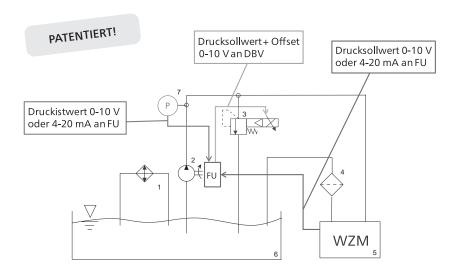
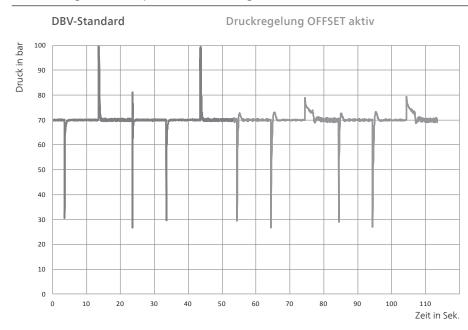


Abb. 6: Festfrequenzen

Technische Informationen



Steuern / Regeln

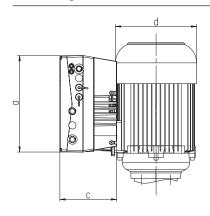

Brinkmann Pumps Offset-Regelung für Schraubenspindelpumpen

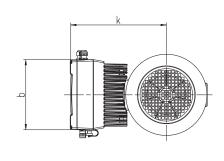
Der Drucksollwert wird vom Frequenzumrichter (FU) situationsbedingt berechnet und nicht von der Werkzeugmaschine vorgegeben. Diese intelligente Ansteuerung des Ventils ermöglicht die Minimierung von potentiellen Druckspitzen.

- 1 = Kühler
- 2 = Schraubenspindelpumpe + FU
- 3 = Druckbegrenzungsventil
- 4 = Filter
- 5 = Werkzeugmaschine
- $6 = K\ddot{u}hlschmierstofftank$
- 7 = Drucksensor

Minimierung von Druckspitzen bei Werkzeugwechseln

Technische Informationen




Steuern / Regeln

TECHNISCHE DATEN Frequenzumrichter FKO (1,5 – 22 kW)								
Funktion	Spezifikation							
Netzspannung	3 AC 380 V -10 % 480 V +10 %							
Netzfrequenz	50/60 Hz ± 6 %							
Leistungsbereiche	1,5 kW 2,2 – 4 kW 5,5 – 7,5 kW 11 – 22 kW							
Gehäusegröße	А	В	С	D				
Schutzart	IP 65 IP 55							
EMV-Abnahme gem. EN61800-3	C2							
Temperaturbereich	−10 °C +50 °C							
Überlastfähigkeit	1,5 facher Ausgangsbemessungsstrom							
Schutzfunktionen	Unterspannung, Überspannung, I 2 t-Begrenzung, Kurzschluss, Motortemperatur, Umrichtertemperatur, Kippschutz							
Ausgangsfrequenzbereich	nach Auslegung ab Werk							
Digitale Eingänge	4							
Festfrequenzen	7							
Digitale Ausgänge	2							
Analoge Eingänge	2 Analogeingänge (0/2 – 10V, 0/4 – 20mA)							
Analoge Ausgänge	$0 - 10 \text{ V (-Imax} = 10 \text{ mA) oder } 0 - 20 \text{ mA (-Bürde R} = 500 \Omega)$							
Prozessregelung	PID							
Relaisausgänge	2 Schließer 250 V AC 2 A							
USB-Schnittstelle	USB auf M12-Stecker (Wandler RS485/RS232)							
Handbediengerät (optional)	MMI mit Kabel							
Busmodule (optional)	CANopen, EtherCAT, PROFINET							
UL-Abnahme	ja							

Abmessungen mit Brinkmann-Motor

Motorleistung kW	Gehäusegröße	a mm	b mm	c mm	d mm	k mm
1,1	А	233	153	120	138	199
1,3 – 1,7	А	233	153	120	176	209
1,9 – 2,6	В	270	189	140	176	223
3,0 – 4,0	В	270	189	140	218	243
5,0 – 5,5	С	307	223	181	218	287
6,0 – 9,0	С	307	223	181	258	306
11,0 – 13,0	D	414	294	233	314	404